Plasminogen enhances neuritogenesis on laminin-1.
نویسندگان
چکیده
Proteins of the plasminogen activation system are broadly expressed throughout the nervous system, and key roles for these proteins in neuronal function have been demonstrated. Recent reports have established that plasminogen is synthesized in neuroendocrine tissues, making this protein and the proteolytic activity of the product of its activation, plasmin, available at sites separated anatomically from circulating, hepatocyte-derived plasminogen. Results with plasminogen-deficient humans and mice suggest a role for plasminogen in neuritogenesis. To elucidate the role of the plasminogen activation system in these processes, the function of plasminogen during neuritogenesis and neurite outgrowth was studied. It is shown here that plasminogen participates in neuritogenesis, as plasmin inhibitors reduced both neurite outgrowth and neurite length in PC-12 cells. The addition of exogenous plasminogen enhanced neurite outgrowth and neurite length in both PC-12 cells and primary cortical neurons. The proteolytic activity of plasmin was required, since mutation of the catalytic serine residue completely abolished the stimulatory activity. Furthermore, mutation of the lysine binding site within kringle 5 of the plasminogen molecule also reduced the neuritogenic activity of plasminogen. Additionally, we demonstrate that plasminogen specifically bound to laminin-1, the interaction resulted in increased plasminogen activation by tissue-type plasminogen activator, and was dependent on a functional lysine binding site within plasminogen kringle 5. Moreover, during NGF-induced neuritogenesis, laminin-1 was degraded, and this cleavage was catalyzed by plasmin. This study provides the first direct evidence that plasminogen participates in neurite outgrowth and also suggests that laminin-1 degradation by plasmin contributes to the process of neuritogenesis.
منابع مشابه
Modulation of neuritogenesis by astrocyte muscarinic receptors.
Astrocytes have been shown to release factors that have promoting or inhibiting effects on neuronal development. However, mechanisms controlling the release of such factors from astrocytes are not well established. Astrocytes express muscarinic receptors whose activation stimulates a robust intracellular signaling, although the role of these receptors in glial cells is not well understood. Acet...
متن کاملRoles of Integrins and Intracellular Molecules in the Migration and Neuritogenesis of Fetal Cortical Neurons: MEK Regulates Only the Neuritogenesis
The roles of integrin subunits and intracellular molecules in regulating the migration and neuritogenesis of neurons isolated from 16.5 gestation days rat fetal cortices were examined using in vitro assays. Results showed that laminin supported the migration of fetal cortical neurons better than fibronectin and that the fetal cortical neurons migrated on laminin using β1 and α3 integrin subunit...
متن کاملStructure of laminin substrate modulates cellular signaling for neuritogenesis.
Laminin, a major component of basement membranes, can self-assemble in vitro into a typical mesh-like structure, according to a mass-action-driven process. Previously, we showed that pH acidification dramatically increased the efficiency of laminin self-assembly, practically abolishing the necessity for a minimal protein concentration. Here we have characterized the morphologies of laminin matr...
متن کاملSialic acid residues on astrocytes regulate neuritogenesis by controlling the assembly of laminin matrices.
In the developing nervous system migrating neurons and growing axons are guided by diffusible and/or substrate-bound cues, such as extracellular matrix-associated laminin. In a previous work we demonstrated that laminin molecules could self-assemble in two different manners, giving rise to matrices that could favor either neuritogenesis or proliferation of cortical precursor cells. We investiga...
متن کاملThe extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator.
This study describes the binding of plasminogen and tissue-type plasminogen activator (t-PA) to the extracellular matrix proteins fibronectin and laminin. Plasminogen bound specifically and saturably to both fibronectin and laminin immobilized on microtiter wells, with Kd(app) values of 115 and 18 nM, respectively. Limited proteolysis by endoproteinase V8 coupled with ligand blotting analysis s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 40 شماره
صفحات -
تاریخ انتشار 2009